

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE CIÊNCIAS AGRÁRIAS

Departamento de Ciência e Tecnologia dos Alimentos Departamento de Zootecnia e Desenvolvimento Rural Campus Itacorubi - CEP 88034-001 -Florianópolis SC

PLANO DE ENSINO 2020.1 1

I. IDENTIFICAÇÃO DA DISCIPLINA:							
CÓDIGO	NOME DA DISCIPLINA	HORAS-AUL	A SEMANAIS	HORAS-AULA			
		TEÓRICAS	PRÁTICAS	SEMESTRAIS			
FSC-7118	Física para ciências agrárias	4	0	72 horas			
II. PROFESSOR(ES) MINISTRANTE(S)							

II. FROFESSOR(ES) WIIIVISTRANTE(

Prof. Rafael Cabreira Gomes

III. PRÉ-REQUISITO(S)(Código(s) e nome da(s) disciplina(s)

MTM – 3100 Pré – Cálculo

IV. CURSOS PARA OS QUAIS A DISCIPLINA É OFERECIDA

(2502) Curso de Zootecnia

(2503) Curso de Ciência e Tecnologia dos Alimentos

V. EMENTA

Medidas Físicas, Vetores, Noções de Mecânica, Mecânica dos Fluídos, Fenômenos Térmicos, Tópicos de eletricidade.

VI. OBJETIVOS

Geral:

O curso de Física para Ciências Agrárias (FSC 7118) tem como objetivo geral instruir o aluno nos fundamentos básicos da Física. O aluno irá descobrir uma ementa dedicada as ambições do curso, que envolve conteúdos como vetores e suas operações matemáticas, dinâmica e princípios de conservação do momento e da energia, fluidos, fenômenos térmicos e noções de eletricidade.

Específicos:

- Familiarizar o estudante com o vocabulário e termos usados no estudo da Física para que ele melhore sua habilidade de comunicar e expressar ideias;
- Desenvolver o raciocínio lógico;
- Usar as teorias para prever movimentos e comportamentos;
- Determinar grandezas e expressar os valores corretamente, fazendo uso de escalas de grandeza e unidades;
- Fazer estimativas, elaborar hipóteses, interpretar os resultados obtidos;
- Relacionar os conceitos de física com sua área de conhecimento;

VII. CONTEÚDO PROGRAMÁTICO

Unidade 1 - VETORES. NOÇÕES DE MECÂNICA

- 1.1. Vetores e operações com vetores
- 1.2. Leis de Newton
- 1.3. Aplicações das Leis de Newton
- 1.4. Momento Linear e sua conservação
- 1.5. Teorema Trabalho-Energia cinética
- 1.6. Energia Potencial e aConservação da Energia mecânica
- 1.7. Torque

Unidade 2 - MECÂNICA DOS FLUIDOS

^{1 -} Plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus - COVID-19, em atenção à Resolução Normativa 140/2020/CUn.

2.1. HIDROSTÁTICA

- 2.1.0. Densidade e pressão
- 2.1.1. Medições de pressão
- 2.1.2. Princípio de Pascal
- 2.1.3. Princípio de Arquimedes

2.2. HIDRODINÂMICA

- 2.2.0. Escoamento de Fluidos
- 2.2.1. Vazão volumétrica
- 2.2.2. Equação da continuidade
- 2.2.3. Equação de Bernoulli

Unidade 3 - FENÔMENOS TÉRMICOS

- 3.1. Temperatura e calor
- 3.2. Dilatação térmica
- 3.3. Calor específico, Calorimetria e Calor latente
- 3.4. Transmissão de Calor
- 3.5. Teoria cinética dos gases

Unidade 4 - TÓPICOS DE ELETRICIDADE

- 4.1. Carga elétrica
- 4.2. Campo elétrico e potencial elétrico
- 4.3. Corrente elétrica e resistência
- 4.4. Lei de Ohm

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Devido ao período de pandemia SARS-Cov2 a metodologia de ensino da disciplina precisou ser modificada visando o distanciamento social. As modificações propostas levam em consideração o "Documento de Orientação das Coordenações dos Cursos de Graduação – CCA – UFSC para as atividades pedagógicas não presenciais" (DOC-CCA) e a Resolução Normativa 140/2020/CUn. Durante o período complementar de reposição 2020-1, com duração de 16 semanas, serão utilizadas ferramentas de ensino remoto, como, vídeo conferências e plataformas de apoio à aprendizagem.

Na maneira convencional, essa disciplina tem 4 horas/aula semanais ministradas regularmente de forma presencial (alunos e professores ocupando o mesmo espaço físico periodicamente). Para o período excepcional, o curso terá o mesmo formato, contudo, almeja-se alcançar os alunos e desenvolver os objetivos da disciplina, decinco formas:

- Antes de começar as atividades de ensino remoto, pretende-se empregar uma semana para ambientação dos alunos a plataforma Moodle, onde eles deverão aprender como atualizar seu perfil, criar e enviar mensagens pelo fórum, usar o chat, enviar arquivos e navegar pela disciplina. Esse período será assessorado pelo professor e monitor da disciplina. Ainda nessa semana serão apresentados detalhes da disciplina, como metodologia, avaliações, bibliografia, monitoria entre outros (itens (b) e (f) do DOC-CCA);
- 2. Depois disso, no decorrer do semestre, serão feitas semanalmente, a distribuição de material didático do tipo assíncrono (videoaulas, vídeos educativos, e-books, textos, artigos, reportagens, ferramentas computacionais (geogebra) sobre os temas abordados no conteúdo programático. Para isso será usada a plataforma Moodle da UFSC (itens (d) e (l) do DOC-CCA). Para os alunos que possuem dificuldade em termos ou conceitos corriqueiros da Física, que serão abordados ao longo do curso, foram preparados materiais de nivelamento. Esses materiais de trabalho são de caráter opcional e ajudarão o estudante a compreender melhor esses conteúdos (item (d) DOC-CCA);
- 3. Aulas síncronaspor vídeo conferência, ministradas no horário das aulas presenciais, usando softwares predeterminados na apresentação da disciplina. As aulas síncronas serão gravadas e disponibilizadas para os alunos no ambiente Moodle da disciplina (item (g) DOC-CCA);
- 4. Dependendo do número de alunos matriculados, pretende-se apresentar uma programação de encontros virtuais semanais/quinzenais com os estudante, com objetivo motivacional². Para essa comunicação direta com os alunos serão utilizados os softwares indicados pela UFSC como: email, Chat Moodle, BigBlueButtom, Skype entre outros;
- 5. Para as dúvidas sobre conteúdo e exercícios, além do atendimento dos professores, será disponibilizado o

² - A periodicidade dos encontros pode variar dependendo do número de alunos matriculadosou do seu rendimento nas avaliações parciais (A1).

atendimento remoto do Monitor da disciplina, através de email, vídeo conferencia, respostas em fórum e chat online. A grade de horários de atendimento do Monitor será disponibilizada na página Moodle da disciplina (item (f) DOC-CCA);

IX. ATIVIDADES PRÁTICAS

Não há

X. METODOLOGIA DE AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

Propõe-se para esse período excepcional de ensino remoto, imposto pelas medidas sanitárias para controle da Sars-Cov2, uma nota composta por quatro tipos diferentes de avaliação (itens (h) e (i) DOC-CCA), a citar:

- A1(10 %) Será atribuída uma nota para assiduidade e participação do aluno nas aulas, encontros, fóruns de discussão entre outros. Essa nota terá caráter subjetivo, pois será dada importância à relevância das participações (item (e) DOC-CCA);
- A2 (20 %) Ao final de tópicosde estudo (semanais) serão aplicados questionários de múltipla escolha remotos sobre o conteúdo abordado. Essa avaliação constará de perguntas simples,com objetivo diagnóstico/formativo do aprendizado. Esse tipo de avaliação ajudará na identificação de problemas no aprendizado para futura recuperação. Essa atividade também será utilizada para computar a frequência dos alunos (itens (j) e (k) DOC-CCA);
- A3 (20 %) O terceiro tipo de avaliação será composta de atividades que exigem um aprofundamento do aluno no conteúdo didático. Essas serão contempladas por problemas complexos que exijam raciocínio apurado do aluno;
- A4 (50%) –Atividade avaliativa principal, sendo composta por Provas. Serão aplicadas duas provas durante o semestre.

Baseado na resolução CuN017/97, a nota resultante de cada item acima será calculada por uma média aritmética. Depois disso, a nota final (n_F) do aluno será calculada através de uma média ponderada, escrita como:

$$n_F = \frac{(A1*0,1) + (A2*0,2) + (A3*0,2) + (A4*0,5)}{10}$$

 $n_F = \frac{10}{10}$ Se ao final das avaliações parciais o estudante obtiver nota final inferior a 6,0 e superior a 3,0; ele poderá realizar uma nova avaliação com data pré-determinada.

Média Final (com Nova Avaliação)

A nova avaliação (prova de recuperação) será realizada na última semana do semestre letivo e versará sobre toda a matéria. A nota final será a média aritmética entre n_F e a nota da prova de recuperação e deverá ser maior ou igual a 6,0 para a aprovação.

Média Final: MF = $(n_F + \text{Nota da Prova de Recuperação}) / 2$

XI. REPOSIÇÃO DE AVALIAÇÃO

A reposição de avaliação deve ser solicitada junto ao Departamento de Física seguindo o que especifica a Resolução 19/CUn/98 e atualizações, particularmente no que se refere à apresentação de atestado médico até 72 horas após a realização da prova.

XII. LEGISLAÇÃO

Não será permitido gravar, fotografar ou copiar as aulas disponibilizadas no Moodle. O uso não autorizado de material original retirado das aulas constitui contrafação – violação de direitos autorais – conforme a <u>Lei nº 9.610/98 – Lei de Direitos Autorais</u>.

XIII. REFERÊNCIAS

BIBLIOGRAFIA BÁSICA³

- Fundamentos de Física Halliday, Resnick, Walker, 8a edição. Livros Técnicos e Científicos Editora. 2000.
- Física Sears, Zemansky, Young, 2a edição. Livros Técnicos e Científicos Editora. 2000.
- Física Halliday, Resnick, Krane, 5°. Edição. Livros Técnicos e Científicos Editora. 2002.

BIBLIOGRAFIA COMPLEMENTAR (itens (a) e (c) DOC-CCA)

- Notas de Aula Física para Ciências Agrárias UFSC
- Física A Livro didático EAD Física UFSC/EAD/CED/CFM
- Física B Livro didático EAD Física UFSC/EAD/CED/CFM
- Física CII Livro didático EAD Física UFSC/EAD/CED/CFM
- Física D Livro didático EAD Física UFSC/EAD/CED/CFM

³⁻ Edições anteriores das bibliografias acima também podem ser usadas, assim como, livros de outros autores destinados ao nível universitário básico.

	Cronograma de avaliações para o semestre complementar (item (a) DOC-CCA)						
	Tópico/Tema	Tipo de aula	Conteúdos	Atividades A1	Atividades A2	Atividades A3	Atividades A4
Semana 1 (31/08-04/09)	Apresentação e Ambientação Moodle (2 h)	1 assíncronas 1 síncrona	Aula 01 - Apresentação da disciplina[1 h] Atividades de ambientação no Moodle (Perfil, Chat, Fórum,)[1 h] Aula nivelamento 1 (atividade opcional) – Medidas, Padrões e Erros[2 h]	Ø			
Semana 2 (07/09-11/09)	Mecânica - (16 h+2 h)	2 aulas assíncronas	Aula 02 – Escalares e Vetores[1 h - Revisão] Aula 03 – Operações com vetores[1 h – Revisão] Aula nivelamento 2 (atividade opcional) – MRU[2 h]		\checkmark		
Semana 3 (14/09-18/09)		2 aulas assíncronas	Aula nivelamento 3 (atividade opcional) – MRUA[2 h] Aula 04 – Leis de Newton[2 h] Aula 05 – Aplicações das Leis de Newton[3 h]		\checkmark		
Semana 4 (21/09-25/09)		2 aulas assíncronas	Aula 06 – Momento Linear e sua conservação[2 h] Aula 07 – Teorema Trabalho – Energia cinética, Energia Potencial e a conservação da energia mecânica [3 h]				
Semana 5 (28/09-02/10)		1 assíncronas 1 síncrona	Aula 08 – Torque [2 h] Aula 09 – Dúvidas (Chat + Fórum + vídeo conferencia) [2 h]		V	V	
Semana 6 (05/10-09/10)	Hidrostática (4 h)	2 aulas assíncronas	Aula nivelamento 4 (atividade opcional) – Fluidos [2 h] Aula 10 – Pressão, medidores de pressão [2 h] Aula 11 – Princípios de Pascal e Arquimedes [2 h]		V		
Semana 7 (12/10-16/10)	Hidrodinâmica	2 aulas assíncronas	Aula 12 – Escoamento de Fluidos e Vazão volumétrica [2 h] Aula 13 – Equação da continuidade [2 h]	Ø			
Semana 8 (19/10-23/10)	(6 h + 2 h)	1 assíncronas 1 síncrona	Aula 14 – Equação de Bernoulli [2 h] Aula 15 – Dúvidas (Chat + Fórum) [2 h]		V		
Semana 9 (26/10-30/10)	Prova (2 h + <mark>2 h</mark>)	1 síncrona 1 avaliação assinc	Aula 16 – Plantão Tira - Dúvidas (Chat + Fórum + vídeo conferência) [2h] Aula 17 – Prova [2h]	$\overline{\checkmark}$			V
Semana 10 (02/11-06/10)	Fenômenos	2 aulas assíncronas	Aula 18 – Temperatura e calor [2 h] Aula 19 – Dilatação Térmica [2 h]				
Semana 11 (09/11-13/11)	Térmicos (10 h + 2 h)	2 aulas assíncronas	Aula 20 – Calor específico, Calorimetria e Calor latente [2 h] Aula 21 – Transmissão de Calor [2 h]		V		
Semana 12 (16/11-20/11)		1 assíncronas 1 síncrona	Aula 22 – Teoria cinética dos gases [2 h] Aula 23 – Dúvidas (Chat + Fórum + vídeo conferencia) [2 h]		\square	Ø	
Semana 13 (23/11-27/11)	Tópicos de Eletricidade (6 h + 2 h)	2 aulas assíncronas	Aula 24 – Carga elétrica [2 h] Aula 25 – Campo elétrico e potencial elétrico [2 h]	Ø	\checkmark		
Semana 14 (30/11-04/12)		1 assíncronas 1 síncrona	Aula 26 – Corrente elétrica e resistência e Lei de Ohm [2 h] Aula 27 – Dúvidas (Chat + Fórum + vídeo conferencia) [2 h]		\checkmark		
Semana 15 (07/12-11/12)	Prova (2 h + <mark>2 h</mark>)	1 síncrona 1 avaliação assinc	Aula 28 – Plantão Tira - Dúvidas (Chat + Fórum + vídeo conferência) [2h] Aula 29 – Prova [2 h]	\square			
Semana 16 (14/12-18/12)	Nova avaliação (2 h + 2 h)	1 síncrona 1 avaliação assinc	Aula 30 – Plantão Tira - Dúvidas (Chat + Fórum + vídeo conferência) [2 h] Aula 31 – Prova [2 h]	$\overline{\checkmark}$			\checkmark

Matriz Instrucional – Curso FSC 7118/2020.1 (item (a) DOC-CCA) ⁴ Tópico/Tema Conteúdos Objetivos de Aprendizagem Recursos didáticos Atividades e estratégias de						
торісо/тепіа	Conteudos	Objetivos de Aprendizageni	Recursos didaticos	interação		
Ambientação Moodle	Apresentação da disciplina Atividades de ambientação no Moodle (Perfil, Chat, Fórum,)	- Ambientação a plataforma Moodle;	- Texto PDF - Videoaula			
Mecânica	Escalares, Vetores e Operações com vetores (Revisão conteúdo já ministrado)	- Aprender as diferenças entre grandezas escalares e vetoriais bem como operações vetoriais;	Notas de Aula – PDF Videoaula e exercícios resolvidos Ferramenta iterativa (geogebra) Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
	Leis de Newton e aplicações	- Conhecer as Leis de Newton e fazer uso delas em problemas selecionados para prever comportamentos;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
	Momento Linear e sua conservação Teorema W –∆K, Energia Potencial e a conservação da energia mecânica	- Entender o formalismo de momento linear e em quais casos acontece sua conservação; - Apresentação aos tipos de energia, sua relação com o conceito de trabalho e a conservação da energia mecânica;	- Notas de Aula – PDF - Videoaula e exercícios resolvidos - Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
	Torque	- Entender o conceito de Torque e suas implicações na rotação de corpos rígidos;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
Hidrostática	Pressão, medidores de pressão, Princípios de Pascal e Arquimedes	- Aprender o conceito de pressão e sua relação com o princípio de Pascal; - Entender o Princípio de Arquimedes e a relação com o peso aparente dos objetos;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
Hidrodinâmica	Escoamento de Fluidos e Vazão volumétrica Equação da continuidade	- Analisar os conceitos de escoamento e vazão para aprender a equação da continuidade;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	- Ler os textos - Assistir as vídeoaulas - Lista de exercícios e responder o questionário		
	Equação de Bernoulli	- Aprender a utilizar os conceitos de energia para analisar o fluxo de um fluido;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
Fenômenos Térmicos	Temperatura e calor Dilatação Térmica	- Descrever as diferenças entre os conceitos de temperatura e calor; - Aprender sobre a dilatação térmica dos materiais.	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
	Calor específico, Calorimetria e Calor latente Transmissão de Calor	- Compreender algumas das propriedades térmicas dos materiais;	- Notas de Aula – PDF - Videoaula e exercícios resolvidos - Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
	Teoria cinética dos gases	- Aprender sobre a composição e comportamento dos gases bem como os parâmetros que regem essa teoria.	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		
Tópicos de Eletricidade	Carga elétrica Campo elétrico e potencial elétrico	- Entender o carácter elementar da carga elétrica; - Aprender os conceitos de campo e potencial elétricos	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	- Ler os textos - Assistir as vídeoaulas - Lista de exercícios e responder o questionário		
	Corrente elétrica e resistência e Lei de Ohm	- Conhecer e compreender o conceito de corrente elétrica e a lei de Ohm;	Notas de Aula – PDF Videoaula e exercícios resolvidos Lista de exercícios	Ler os textos Assistir as vídeoaulas Lista de exercícios e responder o questionário		

⁴Matriz instrucional constituída levando em consideração o período já ministrado em Março/2020. Os recursos didáticos e estratégias de interação podem ser modificados levando em consideração o aproveitamento dos alunos.